Oxiranylidene-2,2-bis(phosphonate): Unambiguous Synthesis, Hydrolysis to 1,2-Dihydroxyethylidene- 1,l-bis(phosphonate), and Identification as the Primary Product from Mild Na₂WO₄/H₂O₂ **Oxidation of Ethenylidene-1,l-bis- (phosphonate)**

Gregory D. Duncan,? Zeng-Min Li, Anil B. Khare,[#] and Charles E. McKenna*

Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744

Received May 31, 1995 (Revised Manuscript Received September 13, 1995)

Particular steric and electronic congeners of pyrophosphate exhibit biological activities ranging from modulation of bone metabolism to inhibition of specific DNA polymerases and other enzymes.¹ Our continuing interest in pyrophosphate analogues containing a potentially reactive group led us to consider the synthesis of oxira**nylidene-2,2-bis(phosphonic** acid) **(4),** a pyrophosphate analogue salt containing an epoxide functional group. Synthesis of both **4** and its tetraethyl ester **(2)** by Naz- $WO₄/H₂O₂$ oxidation of, respectively, ethenylidene-1,1-bis-(phosphonic acid) (EBP) or its tetraethyl ester (1) was reported in the patent literature over **20** years ago, but yields and analytical data confirming the product structures were not given.² Gatrone has reported that EBP is oxidized to phosphoric acid by this method. 3 He found that adjustment of the reaction pH to $6-7$ gave a different product, identified on the basis of its ³¹P and lH NMR spectra as not the expected epoxide **4,** but instead **1,2-dihydroxyethylidene-1,l-bis(phosphonic** acid) **(5).** This compound was observed to undergo decomposition at pH **2** to phosphoric acid and acetylphosphonic acid. Acid-dependent decomposition was proposed to be a general reaction of β -hydroxy-substituted alkylidenebisphosphonic acids.3

In our initial synthetic approach to 4 (Scheme 1), we prepared the tetraethyl ester **2** of this epoxide (recently also made⁴ by alkaline hydroperoxidation of 1^5) via oxidation of 1 with aqueous sodium hypochlorite. 6 However, attempted silyldealkylation of **2** using bromotrimethylsilane (BTMS)⁷ gave more than one product, redirecting us to EBP as our synthetic starting point.

The tetrasodium salt of $EBP⁸$ was treated with Br₂-HzO, rapidly and cleanly converting it to the bromohydrin

* Current address: School of Pharmacy, University of Minnesota. (1) See, for example: (a) Geddes, **A.** D.; D'Souza, S. M.; Ebetino, F. H.; Ibbotson, K. J. In *Bone Mineral Research;* Heersche, J. N. M.; Kanis,

J. **A,,** Eds.; Elsevier: New York, **1994;** Vol. 8, pp **265-306.** (b) Peng, Z.-Y.; Mansour, J. M.; Araujo, F.; Ju, J.-Y.; McKenna, C. E.; Mansour,

T. E. *Biochem. Pharmacol.* **1995,** *49,* **105** and references therein.

(5) Degenhardt, C. R.; Burdsall, D. C. *J. Org. Chem.* **1086,51,3488.**

(6) (a) Khare, A. B. Ph.D. Dissertation, Univ. of South. California, 1991. (b) Levy, J. N.; McKenna, C. E. *Phosphorus Sulfur Silicon Relat.* $Elem.$ **1993**, 85, 1. (7) McKenna, C. E.; Higa, M. T.; Cheng, N. H.; McKenna, M.

Tetrahedron Lett. **1977, 155.**

3, recrystallized from water (NaBr salt-out, room temperature) to an analytically pure product **(32.7%).**

Addition of **3** to a concentrated, chilled, deuterium oxide solution of NaOH resulted overnight in the desired product, which was precipitated by NaBr-MeOH. Washing with MeOH provided the sodium salt of the epoxide **4 (75-80%** purity by 31P **NMR** contained some methanol by lH NMR). This was converted to the dicyclohexylammonium (DCHA+) salt **6** by rapidly drawing an aqueous solution through an acid Dowex **50** column into ethanolic DCHA, thus minimizing any acid-catalyzed hydrolysis. The crude **6** (64%) was recrystallized from ether/acetone/1-propanol and acetone/1-propanol, mp 167-168 "C **(9%);** characterization data, Table 1.

Synthesis of the diol **5** began with preparation of the sodium salt of the epoxide as described above. A concentrated solution of **4** containing excess NaOH was heated to **80** "C. Phosphorus and proton NMR showed complete hydrolysis within **2** days. The product was precipitated with NaBr-MeOH and washed with MeOH to provide **5** as a sodium salt, **95%** pure by 31P NMR and containing some methanol by ¹H NMR. Stirring with acid Dowex **50** in HzO for about 1 h, filtration and vacuum rotary evaporation at 40 "C gave a gummy residue which was dissolved in D_2O (no significant decomposition evident by 31P NMR). Addition of DCHA followed by rotary evaporation, washing with ether, and recrystallization from ether/acetone/1-propanol and acetonell-propanol provided **7** (14%), characterized as reported in Table 1.

The 'H NMR chemical shifts of the epoxide ring protons in **2,4** and **6** are close to **3** ~pm,~ and the epoxide ring 13C NMR resonances in **2** and **4** occur near 47-54 ppm. These values lie within the expected ranges for epoxides, but upfield of typical values for alcohols.¹⁰ In

⁺ Current address: Department of Chemistry, Stanford University.

⁽²⁾ Kerst, **A. F.** (Monsanto Co.) U.S. Patent **3,808,237 (1974).**

⁽³⁾ Gatrone, R. C. *J. Org. Chem.* **1989,** *54,* **4272. (4)** Burgos-Lepley, C. E.; Mizsak, S. **A,;** Nugent, R. **A.;** Johnson, R. *A. J. Org. Chem.* **1993,58, 4159.**

⁽⁸⁾ EBP was previously isolated as a free acid (NMR only) by silyldealkylation of **1** with BTMS in CCL, methanolysis, treatment with KOH, and reacidification using an acidic ion-exchange resin.⁵ Using neat BTMS,7 we were able to isolate the **tetrakis(trimethylsily1)** ester intermediate by distillation, which afforded the analytically pure (C, H, P) NQ+ salt of EBP **(65%),** characterized by 31P, *H, and 13C NMR.

^{(9) &}lt;sup>1</sup>H⁻³¹P NMR spin-spin coupling in the epoxide β -protons appears as a triplet in our **360** MHz 'H spectra, whereas the pattern for the tetramethyl ester⁵ β -protons has been reported as a 5-line signal.

Table 1. Characterization Data for Compounds 2-7

compd	NMR $(\delta, J$ in Hz $)^a$			
	ıΗ	$^{31}P(^{1}H)$	$^{13}C(^{1}H)$	MS ^b
2	3.14 $(t, 3J_{HP} = 5)^c$	15.5(s)	47.3 (t, $^1J_{CP} =$ 183 , 49.4 (s)	316.0840 (316.0841)
3 ^d	4.12 (m)	12.3(s)	58.3 (t, $^{1}J_{CP} =$ 118), $64.7(s)$	
4	2.93 $(t, \, \frac{3J_{HP}}{2} = 5)$	13.1(s)	50.7 (s), 53.6 (t. $1J_{CP} = 150$)	
5	3.90 $(t, 3J_{HP} = 11)^e$	16.8(s)	65.1 (s), 75.6 $(t, \frac{1}{2}J_{CP} = 131)$	
вf	3.08 $(t, \, \frac{3J_{HP}}{2} = 6)^c$	12.3(s)		202.9499 (202.9511)
78	3.98 $(t, \, \frac{3}{2}J_{HP} = 10)^e$	16.1(s)	$63.7(s)$, 74.3 $(t. 1dep = 133)$	220.9618 (220.9616)

Bruker **AM360.** Solvents: CDC4 for **2,** DzO for **3-7.** Solutions: **3 1.4% w/w,** pH = **4.5; 4 1.3% w/w,** pH = 11.1; **5** 3.0% **w/w,** pH = 11.1; **6** and $7 < 1\%$ w/w. ^{*b*} HRMS **(2)** and FAB-HRMS **(6, 7)** data recorded at the regional mass spectroscopy facility at UC Riverside; theoretical values are reported in parentheses. *c* See footnote 9. ^d Anal. for C₂H₅BrNa₂O₇P₂·(H₂O)_{1/2}: C, H, Br. *e* Splitting patterns for the ¹H spectra of the β -hydroxy bisphosphonates are affected by the pH **of** the solution. fAnal. for $C_2H_6O_7P_2$.(DCHA)₂.(H₂O)_{3/2}: C, H, N. ^g Attempts to remove recrystallization solvents by pumping in vacuo at **74** "C decreased DCHA content, leaving a solid giving: Anal. for $C_2H_8O_8P_2$. $(DCHA)_{1.7}$ (acetone)_{1/5} (1-propanol)_{1/6} (H_2O)_{1/2}: C, H, N. [DCHA, and solvate content except for H20, determined by 'H NMR integration].

contrast, the protons on the hydroxy carbon in both the bromohydrin **3** and the diol **5** shift near **4** ppm.ll In **3** C_{β} shifts at 65 ppm, and the diol carbons in $\overline{5}$ shift at 65 and 76 ppm, values more characteristic for alcohols.¹⁰

The similarity (allowing for differences in sample pH) between the 31P and 'H NMR data previously attributed to **5** $({}^{31}P\{{}^{1}H\} \delta$ **13.6** (s); ¹H δ 3.11 (t), ${}^{3}J_{HP} = 6.0$ Hz $){}^{3}$ and those we record in Table 1 for the epoxide salts **4** and *6* is apparent, as is their divergence from our NMR data for **6.** To clarify this discrepancy, we have reinvestigated the $\text{Na}_2\text{WO}_4/\text{H}_2\text{O}_2$ oxidation of EBP. Reaction of tetrasodium EBP (0.8 mmol) in $2 \text{ mL of } 30\% \text{ H}_2\text{O}_2$ containing a catalytic amount of Na_2WO_4 for 3.5 h at 60 °C (N₂) produced 31P NMR signals at 6 **2.72 (66%), 13.23 (24%)** and **16.7 (lo%),** consistent with overoxidation. When a solution of **1.1** mmol of tetrasodium EBP in **1.5** mL of **30%** H20z containing **0.02** mmol of Na2W04 was adjusted to pH **5.1** and heated to **50** "C for **5** h, the major product $(in$ D₂O at pH 6.9) had ³¹P NMR δ 13.7 (s), ¹H NMR δ 2.9 (t) ${}^{3}J_{\text{HP}} = 5.9$ Hz, ¹³C NMR δ 49.4 (s) and 51.3 (t), with small peaks at 6 **2,12** (EBP) and **17.5.** The 31P and 'H NMR data for the main product resemble the values reported for the diol **6,3** but taken together with our 13C NMR data are only consistent with the epoxide **4.** This assignment was confirmed by two additional experi-

ments. Firstly, the area of the major peak in the ³¹P spectrum of the reaction mixture was increased on spiking with authentic **4.** Secondly, addition of NaOH to the reaction mixture, followed by heating at **50** "C for **4** h, resulted in the conversion of approximately **1/3** (31P NMR) of the main product into the diol **6,** identified by 31P (authentic compound spiking), 'H, and 13C NMR.

Gatrone *et al.13* and Nash *et* al.14 have proposed that the product from Na_2WO_4/H_2O_2 oxidation of EBP chelates transition metals, lanthanides, and actinides and subsequently can be decomposed under acidic conditions to release the metal. The half-life for decomposition of the product itself to phosphoric acid at pH **2** was reported as approximately **15** days at room temperature, and **9** days at **50** "C, in a process proposed to be general for β -hydroxy alkylidenebisphosphonates.³

We find, however, that both the diol **6** and the bromohydrin 3 (which is also a β -hydroxy alkylidenebisphosphonate) are stable at pH **2** and room temperature. **An** immediate ${}^{31}P$ NMR of 5 (from 3) in D_2O after pH adjustment to 2 showed only a trace peak near δ 0 in addition to the signal at δ 17.3 due to 5. After 40 days at room temperature, the peak at δ 0 amounted to less than **3%** of the integrated area of the diol peak. Similarly, after 7 days at room temperature, a D_2O solution of 3 at pH 2 had virtually no change by ³¹P NMR: 3 (δ **12.7)** still contributed **99%** of the observed peaks (trace peaks were seen at δ -0.05 and 17.4 ppm). These results suggest that β -hydroxy bisphosphonates may be more stable than previously postulated.¹⁵

Acknowledgment. NIH grant **AI-25697** supported **part** of this work. G.D.D. thanks the **US.** Department of Education for a National Needs Fellowship in Chemistry **1991-1994.**

Supporting Information Available: Synthetic procedures, detailed NMR spectra, and other characterization data for the tetrakis(trimethylsilyl) ester of EBP, Na₄+ salt of EBP, and **2-7;** details **of** 31P NMR stability studies on compounds **3-5 at pH 2 and for reaction mixtures from** $\text{Na}_2\text{WO}_4/\text{H}_2\text{O}_2$ oxidations **of** the sodium salt **of** EBP **(59** pages).

509509824

^{~ ~~ ~~ ~ ~} *(10)* (a) Szymanski, H. **A** Yelin, R. E. *NMR* Band Handbook; IFU Data Corp. Pub: New York, **1968.** (b) Silverstein, **R.** M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification *of* Organic Compounds; John Wiley & Sons: New York, **1981;** pp **181-304.**

⁽¹¹⁾ Br/OH orientation in the bromohydrin is confirmed by the $^{13}C_{\alpha}$ δ (identified by its ¹J_{CP} coupling), 58.3 ppm vs a singlet at 64.7 ppm for ¹³C_β. Nucleophilic attack at \widetilde{C}_{β} in α , β -unsaturated phosphonates is well precedented.¹²

⁽¹²⁾ Hutchinson, **D. W.;** Thornton, D. W. J. Organomet. *Chm.* **1988,** *346,* **341.** These authors obtained analytically pure EBP acid by the method of ref *5.*

⁽¹³⁾ Gatrone, R. C.; Honvitz, E. P.; Rickert, P. G.; Nash, K. L. Sep. Sci. Tech. **1990, 25, 1607.**

⁽¹⁴⁾⁽a) Nash, **K.** L.; Horwitz, E. P. Inorg. *Chin.* Acta **1990,** *169,* **245.** (b) Nash, **K.** L.; Rickert, P. G. Sep. Sci. Tech. **1993,28, 25.**

⁽¹⁵⁾ At pH **2,4** prepared from **3** underwent slow decomposition to yield a new product occurring 4.3 ppm downfield from 4 $(\delta 13.0)$ in the ³¹P NMR spectrum. After 16 days at 50 °C, about 1/3 was converted to this product, identified as the diol 5 by spiking with authentic compound. Significant *peaks* ascribable to either phosphoric acid or acetylphosphonic acid were not detected. In the absence of have not attempted rigorous kinetic investigations in our comparison studies with **4.** Nevertheless, the rate and chemical product differences we observe point to a possible influence of contaminating tungstate catalyst on the decomposition behavior of **4** acetone-precipitated from the Na_2WO_4/H_2O_2 reaction mixture.